FAO SPECIFICATIONS AND EVALUATIONS FOR AGRICULTURAL PESTICIDES

INDOXACARB

(S)-7-chloro-2-[methoxycarbonyl-(4-trifluoromethoxyphenyl)-carbamoyl]-2,5-dihydroindeno[1,2-e][1,3,4]oxadiazine-4a(3H)-carboxylic acid, methyl ester

FOOD AND AGRICULTURE ORGANIZATION of THE UNITED NATIONS

TABLE OF CONTENTS

INDOXACARB

DISCLAIMER	Page
INTRODUCTION	1
PART ONE	
SPECIFICATIONS FOR INDOXACARB	2
INDOXACARB INFORMATION	3
INDOXACARB TECHNICAL MATERIAL (JUNE 2009)	5
INDOXACARB TECHNICAL CONCENTRATE (JUNE 2009)	6
INDOXACARB EMULSIFIABLE CONCENTRATES (JUNE 2009 INDOXACARB WATER DISPERSIBLE GRANULES) 8
(JUNE 2009)	11
INDOXACARB OIL BASED SUSPENSION CONCENTRATE	
(JUNE 2009)	14
PART TWO	
EVALUATIONS OF INDOXACARB	17
2009 FAO/WHO EVALUATION REPORT ON INDOXACARB	18
SUPPORTING INFORMATION	21
ANNEX 1: HAZARD SUMMARY PROVIDED BY THE PROPOS	SER 28
ANNEX 2: REFERENCES	40

DISCLAIMER¹

FAO specifications are developed with the basic objective of promoting, as far as practicable, the manufacture, distribution and use of pesticides that meet basic quality requirements.

Compliance with the specifications does not constitute an endorsement or warranty of the fitness of a particular pesticide for a particular purpose, including its suitability for the control of any given pest, or its suitability for use in a particular area. Owing to the complexity of the problems involved, the suitability of pesticides for a particular purpose and the content of the labelling instructions must be decided at the national or provincial level.

Furthermore, pesticides which are manufactured to comply with these specifications are not exempted from any safety regulation or other legal or administrative provision applicable to their manufacture, sale, transportation, storage, handling, preparation and/or use.

FAO disclaims any and all liability for any injury, death, loss, damage or other prejudice of any kind that may arise as a result of, or in connection with, the manufacture, sale, transportation, storage, handling, preparation and/or use of pesticides which are found, or are claimed, to have been manufactured to comply with these specifications.

Additionally, FAO wishes to alert users to the fact that improper storage, handling, preparation and/or use of pesticides can result in either a lowering or complete loss of safety and/or efficacy.

FAO is not responsible, and does not accept any liability, for the testing of pesticides for compliance with the specifications, nor for any methods recommended and/or used for testing compliance. As a result, FAO does not in any way warrant or represent that any pesticide claimed to comply with a FAO specification actually does so.

_

¹ This disclaimer applies to all specifications published by FAO.

INTRODUCTION

FAO establishes and publishes specifications* for technical material and related formulations of agricultural pesticides, with the objective that these specifications may be used to provide an international point of reference against which products can be judged either for regulatory purposes or in commercial dealings.

Since 1999 the development of FAO specifications follows the **New Procedure**, described in the 5th edition of the "Manual on the development and use of FAO specifications for plant protection products" (FAO Plant Production and Protection Page No. 149). This **New Procedure** follows a formal and transparent evaluation process. It describes the minimum data package, the procedure and evaluation applied by FAO and the Experts of the FAO/WHO Joint Meeting on Pesticide Specifications (JMPS). [Note: prior to 2002, the Experts were of the FAO Panel of Experts on Pesticide Specifications, Registration Requirements, Application Standards and Prior Informed Consent, which now forms part of the JMPS, rather than the JMPS.]

FAO Specifications now only apply to products for which the technical materials have been evaluated. Consequently from the year 2000 onwards the publication of FAO specifications under the **New Procedure** has changed. Every specification consists now of two parts namely the specifications and the evaluation report(s):

PART ONE: The Specification of the technical material and the related formulations of the plant protection product in accordance with chapter 4, 5 and 6 of the 5th edition of the "Manual on the development and use of FAO specifications for plant protection products".

PART Two: The Evaluation Report(s) of the plant protection product reflecting the evaluation of the data package carried out by FAO and the JMPS. The data are to be provided by the manufacturer(s) according to the requirements of Appendix A, Annex 1 or 2 of the "Manual on the development and use of FAO specifications for plant protection products" and supported by other information sources. The Evaluation Report includes the name(s) of the manufacturer(s) whose technical material has been evaluated. Evaluation reports on specifications developed subsequently to the original set of specifications are added in a chronological order to this report.

FAO specifications under the **New Procedure** do <u>not</u> necessarily apply to nominally similar products of other manufacturer(s), nor to those where the active ingredient is produced by other routes of manufacture. FAO has the possibility to extend the scope of the specifications to similar products but only when the JMPS has been satisfied that the additional products are equivalent to that which formed the basis of the reference specification.

Specifications bear the date (month and year) of publication of the current version. Dates of publication of the earlier versions, if any, are identified in a footnote. Evaluations bear the date (year) of the meeting at which the recommendations were made by the JMPS.

*NOTE: PUBLICATIONS ARE AVAILABLE ON THE INTERNET AT http://www.fao.org/agriculture/crops/core-themes/theme/pests/pm/jmps/en/

OR IN HARDCOPY FROM THE PLANT PROTECTION INFORMATION OFFICER.

PART ONE

SPECIFICATIONS

INDOXACARB

PART ONE

	Page
INDOXACARB INFORMATION	3
INDOXACARB TECHNICAL MATERIAL (JUNE 2009)	5
INDOXACARB TECHNICAL CONCENTRATE (JUNE 2009)	6
INDOXACARB EMULSIFIABLE CONCENTRATES (JUNE 2009)	8
INDOXACARB WATER DISPERSIBLE GRANULES	
(JUNE 2009)	11
INDOXACARB OIL BASED SUSPENSION CONCENTRATE	
(JUNE 2009)	14

INDOXACARB

INFORMATION

ISO common name

Indoxacarb (ISO 1750 published)

Synonyms

none

Chemical name(s)

IUPAC (S)-7-chloro-2-[methoxycarbonyl-(4-trifluoromethoxyphenyl)-carbamoyl]-2,5-dihydroindeno[1,2-e][1,3,4]oxadiazine-4a(3H)-carboxylic acid, methyl ester

CA (S)-methyl 7-chloro-2,5-dihydro-2-[[(methoxycarbonyl)[4-(trifluoromethoxy)phenyl]amino]carbonyl]indeno[1,2e][1,3,4]oxadiazine-4a(3H)-carboxylate

Structural formula

Molecular formula

C₂₂H₁₇CIF₃N₃O₇

Relative molecular mass

527.8

CAS Registry number

173584-44-6

144171-61-9 (R/S- ratio 50/50; DPX-JW062)

CIPAC number

612

Identity tests

HPLC retention time, UV and IR spectra

INDOXACARB TECHNICAL MATERIAL

FAO specification 612/TC (June 2009*)

This specification, which is PART ONE of this publication, is based on an evaluation of data submitted by the manufacturer whose name is listed in the evaluation report (612/2009). It should be applicable to relevant products of these manufacturers but it is not an endorsement of those products, nor a guarantee that they comply with the specifications. The specification may not be appropriate for the products of other manufacturers. The evaluation report (612/2009) as PART TWO forms an integral part of this publication.

1 Description

The material shall consist of indoxacarb together with related manufacturing impurities, in the form of a tan to light brown amorphous solid, and shall be free from visible extraneous matter and added modifying agents.

2 Active ingredient

2.1 Identity tests (612/TC/M/2 Note 1)

The active ingredient shall comply with an identity test and, where the identity remains in doubt, shall comply with at least one additional test.

2.2 Indoxacarb content (612/TC/M/3 Note 1)

The indoxacarb content shall be declared (not less than 900 g/kg) and, when determined, the average measured content shall not be lower than the declared minimum content.

Note 1 Methods for the identification and determination of indoxacarb content in TC, TK, EC, OD and WG formulations were presented at the CIPAC Meeting in 2008 and provisionally adopted as CIPAC method. Prior to their publication in Handbook N, copies of the methods may be obtained through the CIPAC website, http://www.cipac.org/prepubme.htm

http://www.fao.org/agriculture/crops/core-themes/theme/pests/pm/jmps/ps/en/.

^{*} Specifications may be revised and/or additional evaluations may be undertaken. Ensure the use of current versions by checking at:

INDOXACARB TECHNICAL CONCENTRATE

FAO specification 612/TK (June 2009*)

This specification, which is PART ONE of this publication, is based on an evaluation of data submitted by the manufacturer whose name is listed in the evaluation report (612/2009). It should be applicable to relevant products of these manufacturers but it is not an endorsement of those products, nor a guarantee that they comply with the specifications. The specification may not be appropriate for the products of other manufacturers. The evaluation report (612/2009) as PART TWO forms an integral part of this publication.

1 Description

The material shall consist of indoxacarb together with related manufacturing impurities and shall be a white powdered solid free from visible extraneous matter and added modifying agents except for the diluent.

2 Active ingredient

2.1 Identity tests (612/TC/M/2 Note 1)

The active ingredient shall comply with an identity test and, where the identity remains in doubt, shall comply with at least one additional test.

2.2 Indoxacarb content (612/TC/M/3 Note 1)

The indoxacarb content shall be declared (not less than 467 g/kg) and, when determined, the average measured content shall not differ from that declared by more than the following

Declared content in g/kg	Tolerance	
above 250 up to 500	± 5% of the declared content	
above 500	±25 g/kg of the declared content	
Note In each range the upper limit is included		

^{*} Specifications may be revised and/or additional evaluations may be undertaken. Ensure the use of current versions by checking at:

http://www.fao.org/agriculture/crops/core-themes/theme/pests/pm/jmps/ps/en/.

Note 1 Methods for the identification and determination of indoxacarb content in TC, TK, EC, OD and WG formulations were presented at the CIPAC Meeting in 2008 and provisionally adopted as CIPAC method. Prior to their publication in Handbook N, copies of the methods may be obtained through the CIPAC website, http://www.cipac.org/prepubme.htm

INDOXACARB EMULSIFIABLE CONCENTRATES

FAO Specification 612/EC (June 2009*)

This specification, which is PART ONE of this publication, is based on an evaluation of data submitted by the manufacturer whose name is listed in the evaluation report (612/2009). It should be applicable to relevant products of these manufacturers but it is not an endorsement of those products, nor a guarantee that they comply with the specifications. The specification may not be appropriate for the products of other manufacturers. The evaluation report (612/2009) as PART TWO forms an integral part of this publication.

1 Description

The material shall consist of technical indoxacarb, complying with the requirements of FAO specification 612/TC (2008), dissolved in suitable solvents, together with any other necessary formulants. It shall be in the form of a stable homogeneous liquid, free from visible suspended matter and sediment, to be applied as an emulsion after dilution in water.

2 Active ingredient

2.1 **Identity tests** (612/EC/M/1 Note 1)

The active ingredient shall comply with an identity test and, where the identity remains in doubt, shall comply with at least one additional test.

2.2 Indoxacarb content (CIPAC/EC/M/2 Note 1).

The indoxacarb content shall be declared (g/kg or g/l at 20 ± 2 °C, Note 2) and, when determined, the content measured shall not differ from that declared by more than the following tolerances:

Declared content g/kg or g/l at 20 ± 2°C	Tolerance
Above 100 up to 250	± 6% of the declared content

3 Physical properties

^{*} Specifications may be revised and/or additional evaluations may be undertaken. Ensure the use of current versions by checking at: http://www.fao.org/agriculture/crops/core-themes/theme/pests/pm/jmps/ps/en/.

3.1 **Emulsion Stability and re-emulsification** (MT 36.3)

The formulation, when diluted at $30 \pm 2^{\circ}$ C with CIPAC Standard Waters A and D, shall comply with the following:

Time after dilution	Limits of Stability
0 h	Initial emulsion complete
0.5 h	"Cream", maximum: 0 ml
2.0 h	"Cream", maximum: 1 ml "Free oil": maximum: 0 ml
24 h	Re-emulsification complete
24.5 h	"Cream", maximum: 1 ml "Free oil": maximum: 0 ml
Note: In applying MT 36.3, tests after 24 h are required only where results at 2 h are in doubt.	

3.2 **Persistent Foam** (MT 47.2) (Note 3)

Maximum: 10 mL after 1 minute

4 Storage Stability

4.1 Stability at 0 °C (MT 39.3)

After storage at $0 + - 2^{\circ}$ for 7 days, the volume of solid and/or liquid, which separates, shall not be more than 0.3 ml.

4.2 Stability at elevated temperature (MT 46.3)

After storage at 54 + - 2% for 14 days (Note 4), the determined average active ingredient content must not be lower than 95% relative to the determined average content found before storage and the formulation shall continue to comply with the clauses for:

- emulsion stability and re-emulsification (3.1)

Note 1 Methods for the identification and determination of indoxacarb content in TC, TK, EC, OD and WG formulations were presented at the CIPAC Meeting in 2008 and provisionally adopted as CIPAC method. Prior to their publication in Handbook N, copies of the methods may be obtained through the CIPAC website, http://www.cipac.org/prepubme.htm

- Note 2 If the buyer requires both g/kg and g/l at 20°C, then in case of dispute the analytical results shall be calculated as g/kg.
- Note 3 The mass of sample to be used in the test should be specified at the highest rate of use recommended by the supplier. The test is to be conducted in CIPAC standard water D.
- Note 4 Analysis of the formulation, before and after the storage stability test, should be carried out concurrently (i.e. after storage) to reduce analytical error.

INDOXACARB WATER DISPERSIBLE GRANULES

FAO Specification 612/WG (June 2009)*

This specification, which is PART ONE of this publication, is based on an evaluation of data submitted by the manufacturer whose name is listed in the evaluation report (612/2009). It should be applicable to relevant products of these manufacturers but it is not an endorsement of those products, nor a guarantee that they comply with the specifications. The specification may not be appropriate for the products of other manufacturers. The evaluation report (612/2009) as PART TWO forms an integral part of this publication.

1 Description

The material shall consist of a homogeneous mixture of technical indoxacarb complying with the requirements of FAO specification 612/TK (2009), together with carriers and any other necessary formulants. The product shall be in the form of roughly spherical granules with a nominal size range of 0.15 to 1.4 mm and an average of approximately 0.5 to 0.7 mm, for application after disintegration and dispersion in water. The product shall be dry, free flowing, essentially non-dusty and free from visible extraneous matter and hard lumps.

2 Active ingredient

2.1 Identity tests (612/WG/M/1 Note 1)

The active ingredient shall comply with an identity test and, where the identity remains in doubt, shall comply with at least one additional test.

2.2 Indoxacarb content (612/WG/M/2 Note 1).

The indoxacarb content shall be declared (g/kg) and, when determined, the content measured shall not differ from that declared by more than the following tolerances:

Declared content g/kg	Tolerance
Above 250 up to 500	± 5% of the declared content

3 Physical properties

http://www.fao.org/agriculture/crops/core-themes/theme/pests/pm/jmps/ps/en/.

^{*} Specifications may be revised and/or additional evaluations may be undertaken. Ensure the use of current versions by checking at:

3.1 **Wettability** (MT 53.3.1)

The formulation shall be completely wetted in 60 seconds, without swirling.

3.2 Wet sieve test (MT 185)

Maximum: 2 % retained on a 75µm test sieve.

3.3 **Degree of dispersion** (MT 174)

A dispersibility of 80 % minimum shall be obtained after 1 minute of stirring.

3.4 **Suspensibility** (MT 184) (Notes 2 & 3)

A minimum of 60% of the indoxacarb content found under 2.2 shall be in suspension after 30 minutes in CIPAC standard water D at 30 \pm 2 $^{\circ}$ C (Note 4)

3.5 **Persistent foam** (MT 47.2) (Note 5).

Maximum: 10 ml after 1 minute.

3.6 **Dustiness** (MT 171) (Note 6).

Nearly dust-free

3.7 **Flowability** (MT 172)

A minimum of 99% of the product shall pass through a 5 mm test sieve after 20 drops of the sieve.

3.8 Attrition resistance (MT 178.2)

Minimum: 98% Attrition resistance

4 Storage Stability

4.1 **Stability at elevated temperature** (MT 46.3)

After storage at $54 \pm 2\,$ C for 14 days, the determined average active ingredient content must not be lower than 95% relative to the determined average content found before storage (Note 7) and the formulation shall continue to comply with the clauses for:

- wet sieve test (3.2);
- degree of dispersion (3.3);

- suspensibility (3.4);
- dustiness (3.6),
- attrition resistance (3.8)

Note 1 Methods for the identification and determination of indoxacarb content in TC, TK, EC, OD and WG formulations were presented at the CIPAC Meeting in 2008 and provisionally adopted as CIPAC methods. Prior to their publication in Handbook N, copies of the methods may be obtained through the CIPAC website, http://www.cipac.org/prepubme.htm

Note 2 The formulation should be tested at the highest and lowest rates of use recommended by the supplier, provided this does not exceed the conditions given in the method.

Note 3 Chemical assay is the only fully reliable method to measure the mass of active ingredient still in suspension. However, simpler methods such as gravimetric method, MT 168, may be used on a routine basis, provided that it has been shown to give equal results to those of chemical assay. In case of dispute, the chemical method shall be the "referee method".

Note 4 Unless another temperature is specified.

Note 5 The mass of the sample to be used in the test should be specified at the highest rate recommended by the supplier.

Note 6 Measurement of dustiness must be carried out on the sample "as received" and, where practicable, the sample should be taken from a newly opened container, because changes in the water content of samples may influence dustiness significantly. The optical method, MT 171.2, usually shows good correlation with the gravimetric method MT 171.1 and can, therefore, be used as an alternative where the equipment is available. Where correlation is in doubt, it must be checked with the formulation to be tested. In case of dispute, the gravimetric method shall be used.

Note 7 Analysis of the formulation before and after storage stability test should be carried out concurrently (i.e. after storage) to minimize the analytical error.

INDOXACARB OIL-BASED SUSPENSION CONCENTRATE

FAO Specification 612/OD (June 2009) (Note 1)*

This specification, which is PART ONE of this publication, is based on an evaluation of data submitted by the manufacturer whose name is listed in the evaluation report (612/2009). It should be applicable to relevant products of these manufacturers but it is not an endorsement of those products, nor a guarantee that they comply with the specifications. The specification may not be appropriate for the products of other manufacturers. The evaluation report (612/2009) as PART TWO forms an integral part of this publication.

1 Description

The material shall consist of a stable suspension of fine particles of technical indoxacarb complying with the requirements of FAO specification 612/TK.in the form of a white to off-white viscous liquid with a faint sweet odour, in a non-aqueous fluid together with suitable formulants. After shaking or stirring of the sample, the material shall be homogeneous (Note 2).

2 Active Ingredient

2.1 **Identity tests** (612/OD/M/1 Note 3)

The active ingredient shall comply with an identity test and, where the identity remains in doubt, shall comply with at least one additional test.

2.2 Indoxacarb content (612/OD/M/2 Note 3).

The indoxacarb content shall be declared (g/kg or g/l at $20 \pm 2^{\circ}$ C, Note 3) and, when determined, the content measured shall not differ from that declared by more than the following tolerances:

Declared content in g/kg or g/l at 20 ℃	Tolerance
above 100 up to 250	± 6% of declared content

^{*} Specifications may be revised and/or additional evaluations may be undertaken. Ensure the use of current versions by checking at:

http://www.fao.org/agriculture/crops/core-themes/theme/pests/pm/jmps/ps/en/

3 Physical Properties

3.1 **Pourability** (MT 148.1)

Maximum "residue": 12 % (Note 5)

3.2 **Spontaneity of Dispersion** (MT 160) (Note 6)

A minimum of 80% of the active ingredient found under 2.2 shall be in the suspension after 5 minutes in CIPAC standard water D at 30 \pm 2°C.

3.3 **Suspensibility** (MT 184) (Note 6)

A minimum of 75% of the active ingredient found under 2.2 shall be in Suspension after 30 minutes in CIPAC Standard water D at $30 \pm 2^{\circ}$ C (Note 7).

3.4 **Wet Sieve test** (MT 185) (Note 8)

Maximum: 1% of the formulation shall be retained on a 75 µm test sieve.

3.5 **Persistent foam** (MT 47.2) (Note 9).

Maximum: 20 ml after 1 minute.

4 Storage Stability

4.1 **Stability at 0 °C** (MT 39.3)

After storage at 0 ± 2 C for 7 days, the formulation shall continue to comply with the clauses for:

- suspensibility (3.3)
- wet sieve test (3.4)

4.2 Stability at elevated temperature (MT 46.3)

After storage at 54 ± 2 °C for 14 days, the determined average active ingredient content must not be lower than 95% relative to the determined average content found before storage (Note 10) and the formulation shall continue to comply with the clauses for:

- pourability (3.2);
- spontaneity of dispersion (3.3);
- suspensibility (3.4);
- wet sieve test (3.6).

- Note 1 This formulation was registered as a Suspension Concentrate (SC) prior to the introduction of the Oil Dispersion (OD) code into Croplife International nomenclature.
- Note 2 Before sampling to verify the formulation quality, inspect the commercial container carefully. On standing, oil-based suspension concentrates (OD) usually develop a concentration gradient from the top to the bottom of the container. This may even result in the appearance of a clear liquid on the top and/or of sediment on the bottom.

 Therefore, before sampling, homogenise the formulation according to the instructions given by the manufacturer or, in the absence of such instructions, by gently shaking of the commercial container (for example by inverting the closed container several times). Large containers must be opened and stirred adequately. After this procedure, the container should not contain a sticky layer of non-dispersed matter at the bottom. A suitable and simple method of checking for a non-dispersed sticky layer ("cake") is by probing with a glass rod or similar device adapted to the size and shape of the container. All the physical and chemical tests must be carried out on a laboratory sample taken after the recommended homogenisation procedure.
- Note 3 Methods for the identification and determination of indoxacarb content in TC, TK, EC, OD and GR formulations were presented at the CIPAC Meeting in 2008 and provisionally adopted as CIPAC methods. Prior to their publication in Handbook N, copies of the methods may be obtained through the CIPAC website, http://www.cipac.org/prepubme.htm
- Note 4 Unless homogenisation is carried out carefully, it is possible for the sample to become aerated. This can lead to errors in the determination of the mass per millilitre, and in the calculation of the active ingredient content (in g/l), if methods other than OECD 109 are used. If the buyer requires both g/kg and g/l at 20 ± 2 °C, then in case of dispute the analytical results shall be calculated as g/kg.
- Note 5: When performing the test in glass as required, the pourability could be higher.
- Note 6: Chemical assay is the only fully reliable method to measure the mass of active ingredient still in suspension. However, simpler methods such as gravimetric method, MT 168, may be used on a routine basis, provided that it has been shown to give equal results to those of chemical assay. In case of dispute, the chemical method shall be the "referee method".
- Note 7: Unless other temperatures and/or times are specified.
- Note 8: This test detects coarse particles (e.g. caused by crystal growth) or agglomerates (crust formation) or extraneous materials, which could cause blockage of spray nozzles or filters in the spray tank.
- Note 9: The mass of the sample to be used in the test should be specified at the highest rate recommended by the supplier. The test is to be conducted in CIPAC standard water D.
- Note 10: Samples of the formulation taken before and after storage stability test should be analyzed concurrently after the test in order to minimize the analytical error.

PART TWO

EVALUATION REPORTS

INDOXACARB

		Page
2009	FAO/WHO evaluation reports based on submission of information	
	from Du Pont (TC, TK, EC, WG, OD)	18
	Supporting information	21
	Annex 1: Hazard summary provided by the proposer	28
	Annex 2: References	40

INDOXACARB

FAO/WHO EVALUATION REPORT 612/2009

Recommendations

The Meeting recommended that:

(i) the specifications for indoxacarb TC, TK, WG, EC and OD proposed by Du Pont, as amended, should be adopted by FAO.

Appraisal

Data provided by Du Pont for indoxacarb in 2007 were evaluated in support of proposed new FAO specifications for TC, TK, WG, EC and OD.

Indoxacarb has been evaluated by the 2005 JMPR. Indoxacarb was registered by the US EPA on October 30, 2000 (both TC and TK) and listed in Annex 1 of Directive 91/414 in the EU in 2006 (TK).

Indoxacarb is a Lepidoptera insecticide, which also has activity on selected sucking insect pests. The mode of action of indoxacarb is on the sodium channels blocking the flow of sodium ions into certain nerve cell ion channels, resulting in paralysis and death of the pest species.

The structure of indoxacarb shows an optically active carbon atom at the bridgehead of the oxadiazine ring. The ISO common name indoxacarb refers to the S-enantiomer solely being the carrier of insecticidal activity. The R-enantiomer does not carry insecticidal activity.

The enantiomeric composition of indoxacarb has evolved over time. Whereas in the beginning of market introduction a technical material having same amount of the R and S-enantiomer, respectively, was synthesized and could, loosely termed be called "racemic indoxacarb", later developments led to technical materials enriched in S enantiomer having ratios of 3S+1R and higher. Currently, a TC with a minimum purity of 900 g/kg and a TK with a minimum of 467 g/kg is produced. The 5 batch data supports the specification for the technical material (TC) of minimum 900 g/kg

FAO SPECIFICATIONS AND EVALUTIONS FOR INDOXACARB

Page 19 of 41

and for the technical concentrate (TK) a minimum of 467 g/kg. The Meeting agreed

that no relevant impurities were identified in the TC and TK, respectively.

Mass balances for the TC were in the range of 982.9 to 987.8 g per kg, for the TK in

the range of 982.5 to 995.8 g per kg, respectively. In the case of the TK, values were

corrected for the contents of residual humidity and the diluent.

The confidential data are identical to those submitted for registration in the United

States.

Indoxacarb is under patent until December 2011. The manufacturing process is

under patent until April 2015. The new manufacturing process is under patent until

June 2022.

The Meeting agreed that, beside the higher content of indoxacarb, based on the

confidential data on composition of TC and TK and hazard data these two materials

are considered as equivalent.

Indoxacarb is a white powdered solid that melts at 88.1 °C. It will not ionise at

environmental pH conditions. This and the low solubility of the active substance (0.2

mg/l) and octanol/water partition coefficient (log 4.65) indicate certain lipophilicity

with a potential to bioaccumulation. The low vapour pressure (9.8 x 10 -9 Pa) and

i a) and

Henry's law constant indicate that volatilisation is not a major route of dissipation.

Indoxacarb is expected to be hydrolytically stable in the absence of sunlight.

However, a route of degradation in water is accelerated with sunlight. In soil, both

indoxacarb and its antipode are expected to be moderately persistent under both

anaerobic and aerobic conditions.

The analytical methods for determination of indoxacarb in TC, TK, EC, GR and OD

were presented at the 52nd CIPAC Meeting in Braunschweig, Germany in 2008 and

were adopted as provisional CIPAC Method. The determination of indoxacarb is by

HPLC on an enantioselective Chiralcel column that allows the separation of

indoxacarb from its optical antipode and was collaboratively validated for all technical

materials and formulations under discussion.

The proposed specifications for TC, TK, EC, WG and OD do comply with the requirements of the FAO and WHO Specification Manual.

Issues relating to TC and TK only

The two indoxacarb materials produced are intended to be formulated in specific preparations. The TC is used in the EC formulation type, whereas the TK is used in the OD and WG. The process for synthesis of the TC leads to a technical material with a low water content. Limiting the water content in the TC, which may with other active ingredients be necessary either to safeguard the stability of the active ingredient or to prevent inhomogeneity in the EC was therefore not necessary. In the same sense, clauses on pH range or acidity/alkalinity were not necessary. The diluent in the TK is added in the final step of the manufacturing process to reduce electrostatic charges and hence to facilitate the handling of the TK in the formulation process.

Issues relating to OD only

This formulation was registered as a Suspension Concentrate (SC) prior to the introduction of the Oil Dispersion (OD) code into Croplife International/FAO nomenclature.

The Meeting questioned the pourability of 12 % "residue" and the rather high limit was confirmed by the proposer.

Issues relating to WG and OD

The manufacturing process of the TK leads to a somewhat higher content of water in the technical material than in the TC. Again, the use of the technical material in the WG and OD allows for a somewhat higher water level in the TK and does not justify a limit.

SUPPORTING INFORMATION FOR EVALUATION REPORT 612/2009

SECTION 2. NON-CONFIDENTIAL DATA ON INDOXACARB (CIPAC number 612)

Uses

Indoxacarb is a Lepidoptera insecticide with activity also on selected sucking insect pests. Indoxacarb can be applied as a foliar spray in field, fruit and vegetable crops. It is used primarily as a larvicide. Indoxacarb is also effective against adults and eggs of many pest species.

Identity of the active ingredient

ISO common name

Indoxacarb (ISO 1750 published)

Chemical name(s)

IUPAC

(S)-7-chloro-2-[methoxycarbonyl-(4-trifluoromethoxyphenyl)-carbamoyl]-2,5-dihydroindeno[1,2-e][1,3,4]oxadiazine-4a(3H)-carboxylic acid, methyl ester CA

(S)-methyl 7-chloro-2,5-dihydro-2-[[(methoxycarbonyl)[4-(trifluoromethoxy) phenyl]amino]carbonyl]indeno[1,2-e][1,3,4]oxadiazine-4a(3H)-carboxylate

Synonyms

none

Structural formula

Molecular formula

 $C_{22}H_{17}CIF_3N_3O_7$

Relative molecular mass

527.8

CAS Registry number

173584-44-6 (indoxacarb, code name DPX-KN128)

144171-61-9

CIPAC number

612

Identity tests

HPLC retention time, UV and IR Spectra

Physico-chemical properties of indoxacarb

Table 1b: Physico-chemical properties of pure indoxacarb

Parameter	Value(s) and conditions	Purity %	Method reference (and technique if the reference gives more than one)	Reference
Vapour pressure	9.8x10 ⁻⁹ Pa at 20 ℃ 2.5x10 ⁻⁸ Pa at 25 ℃	99.7%	Directive 97/37/EC, Annex 1, Points 2.3.1 and 2.3.2 (Effusion method: vapour pressure balance); U.S. EPA OPPTS 830.7950 (Effusion method: loss of weight)	1, AMR 4169-96
Melting point, boiling point and/or temperature of decomposition	Melting point: 88.1 °C±0.4 Boiling point: Not applicable. Test material is a solid. Decomposition temperature: Not Determined	99.7%	Directive 97/37/EC, Annex 1, Points 2.2.1; EEC A.1; U.S. EPA OPPTS 830.7200(Capillary method)	2, AMR 4141-96
Solubility in water	0.20 mg/l at 25 °C in distilled water	99.7%	Directive 94/37/EC, Annex 1 Point 2.6; EEC A.6; U.S. EPA OPPTS 830.7860 (Column elution method)	4, AMR 4141-96
Octanol/water partition coefficient	Log of K _{OW} = 4.65 at 25 ℃	99.7%	Directive 94/37/EC, Annex 1, Point 2.8; EEC A.8; U.S. EPA OPPTS 830-7550 (Flask method)	6, AMR 4141-96
Dissociation characteristics	Does not dissociate	99.7%	Directive 94/37/EC Annex 1, Points 2.9.4; OECD 112; U.S. EPA OPPTS 830.7370	9. AMR 4141-96

Table 1b: Physico-chemical properties of indoxacarb 3S+1R (DPX-MP062)

Parameter	Value(s) and conditions	Purity %*	Method reference (and technique if the reference gives more than one)	Reference
Melting point, boiling point and/or temperature of	Melting point: 87.1-141.5 ℃ (note: two separated peaks at 88 and 141 ℃)	99.4%	OECD Guideline 102 (DSC and capillary method); U.S. EPA 830.7200; EEC A.1	2, DuPont- 7557 RV1
decomposition	Boiling point: Not applicable. Test material is a solid.	99.4%		
	Decomposition temperature: 208 ± 7.0 ℃			
Solubility in water	22.5 ±3.6 µg/L at 20 ℃ in unbuffered water	99.4%	U.S. EPA OPPTS 830.7840; OECD, Method 105 (Water Solubility: Column Elution Method)	5, DuPont- 7497
Hydrolysis characteristics	at 25 ± 1 °C and pH 5 no significant degradation (less than 5%) was observed after 30 days.	[indanone- 1-14C]]DPX- MP062 – 98.4%	U.S. EPA Subdivision N Chemistry, Section 161-1; OECD, Section 1, Method 111;	7, DuPont- 9800
	Half-life = 22 days at 25 ± 1 °C at pH 7	[trifluoromet hoxyphenyl(U)-	SETAC	
	Half-life = 0.3 hours at 25 ± 1 °C at pH 9	14C]DPX- MP062 - 99.1%		
Photolysis characteristics	Simulated sunlight:	[indanone- 1-14C]]DPX-	U.S. EPA Subdivision N, Series 161-2;	8, DuPont- 9801
	Half-life = 4.5 days in pH 5 at 25 ℃	MP062 - 98.4%	SETAC	
		[trifluoromet hoxyphenyl(U)- 14C]DPX- MP062 - 99.1%		

^{*)} For indoxacarb 3S+R and racemic indoxacarb, the purity is the sum of the R- and S-isomer expressed as a percentage of the test material

Table 2a: Chemical composition and properties of indoxacarb technical concentrate (TK) (*indoxacarb 3S+1R*)

Manufacturing process, maximum limits for impurities ≥ 1 g/kg, 5 batch analysis data	Confidential information supplied and held on file by FAO. Mass balances were in the range of 982.5 to 995.8 g per kg, *.
Declared minimum [a.i.] content	467 g/kg (indoxacarb)
Relevant impurities ≥ 1 g/kg and maximum limits for them	None
Relevant impurities < 1 g/kg and maximum limits for them:	None
Stabilisers or other additives and maximum limits for them:	None
Melting temperature range of the TK	87.1-141 °C

^{*} Values were corrected for the contents of residual humidity and the diluent.

Table 2b: Chemical composition and properties of indoxacarb technical material (TC)

Manufacturing process, maximum limits for impurities ≥ 1 g/kg, 5 batch analysis data	Confidential information supplied and held on file by FAO. Mass balances were 982.9 to 987.8 g per kg.
Declared minimum [a.i.] content	900 g/kg
Relevant impurities ≥ 1 g/kg and maximum limits for them	None
Relevant impurities < 1 g/kg and maximum limits for them:	None
Stabilisers or other additives and maximum limits for them:	None
Melting or boiling temperature range of the TC	Melting point 88.1 ℃±0.4

HAZARD SUMMARY

Indoxacarb has been evaluated by the FAO/WHO JMPR in 2005. The JMPR established the ADI as 0-0.01 mg/kg bw, and the ARfD was established as 0.1 mg/kg bw. It should be recognized that the ADI and ARfD applies to indoxacarb (Senantiomer) and its Renantiomer. The EU classification categories for Indoxacarb are:

With regard to toxicological data:

Xn = Harmful

R22 = Harmful if swallowed

R43 = May cause sensitization by skin contact

With regard to fate and behaviour:

No classification required.

With regard to ecological data:

N = Dangerous to the environment

R50/53= Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

According to the WHO IPCS hazard classification system, both *indoxacarb 3S+1R* Technical Material and indoxacarb Technical Material fall into Class II (moderately hazardous) for solids.

Formulations

The main formulation types available are a water dispersible granule (WG), an oil based dispersion (OD) initially registered as a suspension concentrate (SC) and an emulsifiable concentrate (EC). These formulations are registered and sold in many countries throughout the world.

Methods of analysis and testing

A normal-phase enantioselective HPLC method with UV detection which is capable to separate indoxacarb from its optical antipode and to determine the amount of the R-enantiomer beside the active ingredient in TC, TK, WG, OD and EC was successfully validated under the auspices of CIPAC, presented at the 2008 CIPAC Meeting in Braunschweig and adopted as provisional CIPAC Method.

The method for determination of impurities in both *indoxacarb 3S+1R* Technical Material and indoxacarb Technical Material is based on reversed-phase liquid chromatography (RPLC), using UV detection at 230, 210, 254 and 290 nm and external standardisation.

Test methods for determination of physico-chemical properties of the technical active ingredient were OECD, EEC, EPA, CIPAC, SETAC and ASTM while those for the formulations were CIPAC, as indicated in the specifications.

Physical properties

With the exception of the pourability of the suspension concentrate, which does not present a problem in the commercial container, the physical properties, the methods for testing them and the limits proposed for the WG, OD and EC formulations, comply with the requirements of the FAO/WHO Manual (1st edition).

Containers and packaging

No extraordinary container or package issues need be considered.

Expression of the active ingredient

The active ingredient is expressed as indoxacarb.

ANNEX 1 HAZARD SUMMARY PROVIDED BY THE PROPOSER

Toxicological summaries

Notes.

- (i) The proposer confirmed that the toxicological and ecotoxicological data included in the summary below were derived from indoxacarb having impurity profiles similar to those referred to in the tables above.
- (ii) The conclusions expressed in the summary below are those of the proposer, unless otherwise specified.

Table 1A:Toxicology profile of the indoxacarb technical concentrate (TK, indoxacarb 3S+1R or DPX-MP062), based on acute toxicity, irritation and sensitization.

Species	Test	Duration and conditions or guideline adopted*	Result	Reference
Male and Female Rats	Acute oral	14 days (up to 24 days) DPX-MP062 (94.5% purity)	LD ₅₀ = 1730 mg/kg bw; male	11, HLR 910-96
		EEC 92/69, Method B.1; U.S. EPA Subdivision F, 81-1; OECD, Part 401; MAFF Japan, 59 NohSan No. 4200	268 mg/kg bw; female	
Male and	Acute oral	14 days	$LD_{50} = 1070 \text{ mg/kg bw};$	11, HLO
Female Rats		DPX-MP062-89 (MUP) (67.8% purity)	male 407 mg/kg bw;	1997-00477
		EEC 92/69, Method B.1; U.S. EPA Subdivision F, 81-1; OECD, Part 401; MAFF Japan, 59 NohSan No. 4200	female	
Male and	Acute dermal	14 days	$LD_{50} = >5000 \text{mg/kg bw};$	12, HLR
Female Rats		DPX-MP062 (94.5% purity)	male and female	798-96 RV1
		Directive 92/69/EEC Method B.3; U.S. EPA Subdivision F, 81-2; OECD, Part 402; MAFF Japan, 59 NohSan No. 4200		
Male and	Acute inhalation	14 days	$LC_{50} = >5500 \text{ mg/m}^3$	13, HL
Female Rats		DPX-MP062-89A MUP(70.7% purity)	(5.5 mg/L), male and female	1997-00445
		Directive 92/69/EEC Method B.2; USEPA Subdivision F, 81-3; 59 NohSan No. 4200; OECD 403		
Male	Acute skin	72 hours	Non-irritant	14, HLO
Rabbit	irritation	DPX-MP062 (94.5% purity)		598-96 RV1
(New Zealand white)		Directive 92/69/EEC Method B.4; U.S. EPA Subdivision F, 81-5; 59 NohSan No. 4200; OECD 404		
Female	Acute eye	72 hours	Non-irritant	15, HLR
Rabbit	irritation	DPX-MP062 (94.5% purity)		588-96 RV1
(New Zealand white)		Directive 92/69/EEC Method B.5; U.S. EPA Subdivision F, 81-4; OECD 405; 59 NohSan No. 4200		
Male and	Acute eye	14 days	Non-irritant	15, HLO
Female Rabbit	irritation	DPX-MP062-89B MUP (67.8% purity)		1997-00478
(New Zealand white)		Directive 92/69/EEC Method B.5; U.S. EPA Subdivision F, 81-4; OECD 405; 59 NohSan No. 4200		
Male Guinea Pigs	Acute skin sensitisation	3 week in duration; 48 hour challenge	Dermal sensitizer via method of Magnusson & Kligman	16, HLO 388-96 RV3
9~		DPX-MP062 (94.5% purity)		

Species	Test	Duration and conditions or guideline adopted*	Result	Reference
(Dunkin Hartley)		Directive 92/69/EEC Method B.6; U.S. EPA Subdivision F, 81-6; OECD 406; 59 NohSan No. 4200		

^{*)} For indoxacarb 3S+R and racemic indoxacarb, the purity is the sum of the R- and S-isomer expressed as a percentage of the test material.

Table 1B:Toxicology profile of the indoxacarb technical material (TC or *DPX-KN128*), based on acute toxicity, irritation and sensitization.

Species	Test	Duration and conditions or guideline adopted	Result	Reference
Male and Female	Acute oral	14 days DPX-KN128 (99.7% purity)**	LD ₅₀ = 843 mg/kg bw; male	11, HLR 1997-00055
Rats		EEC 92/69, Method B.1; U.S. EPA Subdivision F, 81-1; OECD, Part 401; MAFF Japan, 59 NohSan No. 4200	179 mg/kg bw; female	
Female	Acute oral	14 days	$LD_{50} = >2000 \text{ mg/kg bw}$	17, DuPont-
Rodents (Mice)		DPX-KN128 (95.5% purity)		14496
(6)		U.S. EPA OPPTS 870.1100; OECD, Part 425		
Male and	Acute dermal	14 days	LD ₅₀ = >5000mg/kg bw; male and female	18, DuPont-
Female Rats		DPX-KN128 (95.5% purity)		13019
riaco		Directive 92/69/EEC Method B3; U.S. EPA OPPTS 870.1200; OECD, Part 402; MAFF Japan, 59 NohSan No. 4200		
Male	Acute skin	72 hours	Non-irritant	19, DuPont-
Rabbit	irritation	DPX-KN128 (95.5% purity)		13164
(New Zealand white)		Directive 92/69/EEC Method B.4; U.S. EPA OPPTS 870.2500; 59 NohSan No. 4200; OECD 404		
Female	Acute eye	72 hours	Non-irritant	20, DuPont-
Rabbit	irritation	DPX-KN128 (95.5% purity)		13020
(New Zealand white)		Directive 92/69/EEC Method B.5; U.S. EPA OPPTS 870.2400; OECD 405; 59 NohSan No. 4200		
Male Guinea	Acute skin	3 week in duration; 48 hour	Dermal sensitizer via method of Magnusson	21, Dupont-

^{* *)} For *indoxacarb* (DPX-KN128), the purity is the S-isomer expressed as a percentage of the test material

Species	Test	Duration and conditions or guideline adopted	Result	Reference
Pigs	sensitization	challenge	& Kligman	13018
(Dunkin		DPX-KN128 (95.5% purity)		
Hartley)		U.S. EPA OPPTS 870.2600; 59 NohSan No. 4200		

Table 2: Toxicology profile of *indoxacarb 3S+1R (DPX-MP062)* Technical concentrate and indoxacarb (*DPX-KN128*) Technical Material (unless otherwise noted) based on repeated administration (subacute to chronic)

Species	Test	Duration and conditions or guideline adopted*	Result	Refere nce
Male and Female Rats (Cr1:CD)	Feeding	90 days DPX-MP062 (94.5% purity) Dose levels: 0, 10, 25, 50, 100 or 200 ppm Directive 87/302/EEC; U.S.	NOAEL: Male: 100 ppm (6.01 mg/kg bw/day) Female: 25 ppm (2.13 mg/kg bw/day)	22, HL 1997-00056 RV1, VO1&2, SU1
Male and Female Rats	Dermal	EPA Subdivision F, 82-1; 59 Nohsan No. 4200; OECD 408 28-day DPX-MP062 (95.8% purity) Dose levels: 50, 500, 1000 or 2000 mg/kg bw/day Directive 92/69/EEC; U.S. EPA OPPTS 870.3200; OECD 410; 59 Nohsan No. 4200	NOAEL: Male: 1000 mg/kg bw/day Female: 50 mg/kg bw/day	23, DuPont- 2813 VO1&2
Male and Female Rats	Inhalation	28-day DPX-MP062-89A MUP (70.0% purity) Dose levels: 0, 4.6, 23 or 290 mg/m³ U.S. EPA OPPTS 870.3465; OECD 412	NOAEL: 4.6 mg/m ³ based on slight on irritant effects of silicon dioxide carrier NOAEL: 23 mg/m ³ for effects referable to DPX-MP062	24, DuPont- 10222
Male and Female Rats (Cr1:CD)	Feeding	28 days DPX-JW062 (94.7% purity) Dose levels: 0, 12, 29, 59, 118 or 235 ppm Essentially meets the requirements of OECD 407	NOAEL: Male: 118 ppm (8.85 mg/kg bw/day) Female: 29 ppm (2.61 mg/kg bw/day)	HLR 403-93
Male and Female	Feeding	28 days	NOAEL: Male: 59 ppm	HLR 406-93

Species	Test	Duration and conditions or guideline adopted*	Result	Refere nce
Mice		DPX-JW062 (94.7% purity)	(10.8 mg/kg bw/day)	RV1
(Cr1:CD)		Dose levels: 0, 12, 29, 59, 118, 235, 400, 1225 or 2450 ppm	Female: 118 ppm (21.5 mg/kg bw/day)	
		Essentially meets the requirements of OECD 407		
Male and	Feeding	90 days	NOAEL = 60 ppm (3.9	22, HLR
Female Rats (Cr1:CD)		DPX-JW062-34 (50% DPX- KN128, 50% DPX-KN127) (94.7% purity)	and 4.6 mg/kg bw/day for males and females, respectively)	751-93 RV2, VO1, SU1
		Dose levels: 0, 15, 30, 60, 125 or 250 ppm		
		Directive 87/302/EEC; USEPA Subdivision F, 82-1; OECD 408; 59 Nohsan No. 4200		
Male and Female	Feeding	90 days	NOAEL: Male: 150 ppm (23 mg/kg bw/day)	22, HLR 750-93
Mice (Cr1:CD)		DPX-JW062-34 (50% DPX- KN128, 50% DPX-KN127) (94.7% purity)	Female: 75 ppm (16 mg/kg bw/day)	SU1, RV1, VO1&2
		Dose levels: 0, 10, 35, 75, 150 or 300 ppm		
		Directive 87/302/EEC; U.S. EPA Subdivision F, 82-1; OECD 408; 59 Nohsan No. 4200		
Male and	Feeding	90 days	NOAEL: Male: 80 ppm	17, HLO
Female Dogs		DPX-JW062-106 (50% DPX- KN128, 50% DPX-KN127)	(2 mg/kg bw/day) Female: 160 ppm (5	494-95 RV3, VO1-3
(Beagle)		(95.03% purity)	mg/kg bw/day)	
		Dose levels: 40, 80, 160 or 640 ppm		
		Directive 87/302/EEC; USEPA Subdivision F, 82-1; OECD 409; 59 Nohsan No. 4200		

Species	Test	Duration and conditions or guideline adopted*	Result	Refere nce
Male and	Feeding	18 month	NOAEL: 20 ppm (2.63	25, HLR
Female Mice		DPX-JW062-106 (50% DPX- KN128, 50% DPX-KN127) (95.0% purity)	and 3.99 mg/kg bw/day for males and females, respectively)	799-96 SU1, VO1- 4
		Dose levels: 0, 20, 100, 125, 150 or 200 ppm	There were no treatment-related neoplastic changes in	
		Directive 87/302/EEC; U.S. EPA Subdivision F, 83-2; OECD 451; 59 Nohsan No. 4200 (See Reference 25)	any dose group	
Male and female	Feeding	2 years	NOAEL: Male: 60 ppm	26, HLR
Rats		DPX-JW062-106 (50% DPX- KN128, 50% DPX-KN127) (95.0% purity)	(2.40 mg/kg bw/day) Female: 40 ppm (2.13 mg/kg bw/day)	1174-96 RV1, SU1, VO1-9
		Dose levels: 0, 10, 20, 40, 60, 125 or 250 ppm	There were no treatment-related	
		Directive 87/302/EEC; USEPA Subdivision F, 83-5; OECD 453; 59 Nohsan No. 4200	neoplastic changes in any dose group	
Male and	Feeding	1 year	NOAEL: 40 ppm (1.1	27, HLO
Female Dogs (Beagle)		DPX-JW062-106 (50% DPX- KN128, 50% DPX-KN127) (95.03% purity)	and 1.3 mg/kg bw/day for males and females, respectively)	885-96 RV1, SU1, VO1-4
		Dose levels: 40, 80, 640 or 1280 ppm		
		Directive 87/302/EEC; U.S. EPA Subdivision F, 83-1; OECD 452; 59 Nohsan No. 4200		
Rat	Acute	15 days	NOAEL: Neuro-	28, HLR
	neurotoxicity, gavage	DPX-MP062 (94.5% purity) Dose levels: 0, 12.5, 25, 50, 100	Male: 100 mg/kg bw/day	1117-96 RV2, VO1&28
		or 200 mg/kg bw/day U.S. EPA Subdivision F, 81-8	Female: 50 mg/kg bw/day	
			Systemic-	
			Male: 100 mg/kg bw/day	
			Female: 12.5 mg/kg bw/day	
Rat	Developmental neurotoxicity,	Through postnatal day 60	NOAEL: Maternal: 1.5	29, DuPont- 15150 SU1,
	gavage	DPX-KN128 (95.5% purity)	mg/kg/day Offspring:	VO1-7
		Dose levels: 0, 0.5, 1.0, 1.5, 3.0 mg/kg bw/day	Male: 1.5 mg/kg/day	
		U.S. EPA OPPTS 870.6300	Female: 3.0 mg/kg/day	
Male and Female	Subchronic neurotoxicity,	90 days	NOAEL: Neuro-	30, HLR 1116-96
Rats	feeding	DPX-MP062 (94.5% purity)	Male: 200 ppm (11.9 mg/kg bw/day)	RV1,
		Dose levels: 0, 10, 50, 100 or	Female: 100 ppm (6.09	VO1&2

Species	Test	Duration and conditions or guideline adopted*	Result	Refere nce
		200 ppm	mg/kg bw/day)	
		Subdivision F, 82-7	Systemic-	
			Male: 10 ppm (0.57 mg/kg bw/day)	
			Female: 10 ppm (0.68 mg/kg bw/day)	
Male and	Subchronic	90 days	NOAEL: Male: 50 ppm	22, HLR
Female Rats	feeding	DPX-JW062-69 (91.5% purity of	(3.2 mg/kg bw/day)	301-94 RV2,
		which 99.7% is KN128)	Female: 20 ppm (1.7 mg/kg bw/day)	VO1&2
		Dose levels: 0, 3, 8, 20, 50 or 100 ppm	mg/kg bw/day)	
		Directive 87/302/EEC; U.S. EPA Subdivision F, 82-1; OECD 408; 59 Nohsan No. 4200		

^{*)} For *indoxacarb 3S+R* (DPX-MP062) and *racemic indoxacarb* (DPX-JW069), the purity is the sum of the R- and S-isomer expressed as a percentage of the test material. For *indoxacarb* (DPX-KN128), the purity is the S-isomer expressed as a percentage of the test material

Table C. Developmental/ reproduction profile of *indoxacarb 3S+1R* (DPX-MP062) Technical concentrate and indoxacarb (DPX-KN128)

Technical Material (unless otherwise noted) based on repeated administration

Species	Test	Duration and conditions or guideline adopted*	Result	Reference
Rat	Teratology, gavage	DPX-MP062 (94.5% purity) Directive 87/302/EEC; U.S. EPA Subdivision F, 83-3; OECD 414; 59 Nohsan No. 4200	Maternal NOAEL = 2 mg/kg bw/day Foetal NOAEL =2 mg/kg bw/day	31, HL 1997-00202 RV2
Rat	Teratology, gavage	DPX-KN128 (95.5% purity) Directive 87/302/EEC; U.S. EPA OPPTS 870.3700; OECD 414; 59 Nohsan No. 4200	Maternal NOAEL = 2 mg/kg bw/day Foetal NOAEL =2 mg/kg bw/day	32, DuPont- 12748
Rabbit	Teratology, gavage	DPX-JW062-112 (94.8% purity) Directive 87/302/EEC; U.S. EPA Subdivision F, 83-3; OECD 414; 59 Nohsan No. 4200	Maternal NOAEL = 500 mg/kg bw/day Foetal NOAEL = 500 mg/kg bw/day	31, HLR 587-95 SU1
Rat	Reproduction, Feeding	DPX-JW062-106 (95.3% purity) Dose levels: 20, 60, 100 ppm Directive 87/302/ EEC; U.S.	Parental NOAEL = 20 ppm (1.3 mg/kg bw/day)	33, HLO 115-96 RV2, VO1-

Species	Test	Duration and conditions or guideline adopted*	Result	Reference
		EPA Subdivision F, 83-4	Offspring NOAEL = 20 ppm (1.3 mg/kg bw/day)	46
			Reproductive NOAEL =100 ppm (6.7 mg/kg bw/day)	
Human and Rat	Absorption- penetration	6 hours [14C]DPX-MP062 (95.2% purity) Draft OECD guidelines (1996)	Minimal absorption for both human and rat	DuPont- 3354
	Absorption- penetration	24 hours [14C]DPX-MP062 (97.2% purity) FIFRA Guideline 85-3	Very minimal absorption. Over half of what was absorbed was excreted within 24 hours.	HLO 1998- 00944

^{*)} For *indoxacarb 3S+R* (DPX-MP062) and *racemic indoxacarb* (DPX-JW069), the purity is the sum of the R- and S- isomer expressed as a percentage of the test material.

Table D1. Mutagenicity profile of *indoxacarb 3S+1R* (DPX-MP062) Technical concentrate based on in vitro and in vivo tests

Species	Test	Conditions*	Result	Reference
Salmonell a typhimuri um	Bacterial gene mutation	DPX-MP062 (94.5% purity) Directive 92/69/EEC Method B.13 and Method B.14; U.S. EPA Subdivision F, 84-2; OECD 471 and 472; 59 NohSan No. 4200	Negative with and without activation	34, HLR 831-96
Chinese Hamster Ovary cells (HGPRT)	Mammalian cell gene mutation	DPX-MP062 (94.5% purity) Directive 87/302/EEC Part B <i>In vitro</i> Mammalian Cell Mutation Test; U.S. EPA Subdivision F, 84-2; OECD 476	Negative with and without activation	35, HLO 1997-00030
Rat hepatocyt es	In vitro Unscheduled DNA synthesis (UDS)	DPX-MP062 (94.5% purity) Directive 87/302/EEC Part B - DNA Damage Repair - Unscheduled DNA Synthesis; U.S. EPA Subdivision F, 84-4; OECD 482; 59 NohSan No. 4200	Negative	36, HLO 1997-00033
Human lymphocy	In vitro mammalian cell	DPX-MP062 (94.5% purity)	Negative chromosome aberration with and	37, HLO

Species	Test	Conditions*	Result	Reference
tes	cytogenetics	Directive 92/69/EEC Method B.10; U.S. EPA Subdivision F, 84-2, ; OECD 473	without activation	979-96
Mouse bone marrow	In vivo micronucleus	DPX-MP062 (94.5% purity) Directive 2000/32/EEC; U.S. EPA Subdivision F, 84-2; Annex 4C- B.12.; OECD 474; 59 NohSan No. 4200	Negative	38, HLR 1046-96 RV1

^{*)} For *indoxacarb 3S+R* (DPX-MP062), the purity is the sum of the R- and S-isomer expressed as a percentage of the test material.

Table D2. Mutagenicity profile of indoxacarb (DPX-KN128) Technical Material based on in vitro and in vivo tests

Species	Test	Conditions	Result	Reference
Salmonella typhimurium	Bacterial gene mutation	DPX-KN128 (95.5% purity) Directive 2000/32/EEC Annex 4D; U.S. EPA OPPTS 870.5100; OECD 471; JMAFF12 NohSan No. 8147	Negative with and without activation	34, DuPont- 14332
Chinese Hamster Ovary cells (HGPRT)	Mammalian cell gene mutation	DPX-KN128 (95.5% purity) Directive 2000/32/EEC Annex 4E; U.S. EPA OPPTS 870.5300; OECD 476; JMAFF12 NohSan No. 8147	Negative with and without activation	35, DuPont- 13023
Human lymphocytes	In vitro mammalian cell cytogenetics	DPX-KN128 (95.5% purity) Directive 2000/32/EEC Annex 4D; U.S. EPA OPPTS 870.5375; OECD 473; JMAFF12 NohSan No. 8147	Negative	37, DuPont- 13022 RV1
Mouse bone marrow	In vivo micronucleus	DPX-KN128 (95.5% purity) Directive 2000/32/EEC Annex 4C- B.12.; U.S. EPA OPPTS 870.5395; OECD 474; 59 NohSan No. 4200	Negative	38, DuPont- 13021

^{*)} For indoxacarb (DPX-KN128), the purity is the S-isomer expressed as a percentage of the test material

Table E. Ecotoxicology profile of *indoxacarb 3S+1R* (DPX-MP062)

Technical concentrate and indoxacarb (DPX-KN128) Technical Material

Species	Test	Duration and conditions*	Result	Reference
Lepomis	Acute	96 hr, flow-through (unaerated)	$LC_{50} = 0.90 \text{ mg/L}$	HLR 912-96
macrochirus		DPX-MP062 (94.5% purity)		RV2
(bluegill sunfish)		U.S. EPA Subdivision E, 72-1; OECD 203; EEC Method C.1.		
Oncorhynchus	Acute	96 hr, flow-through (unaerated)	$LC_{50} = 0.65 \text{ mg/L}$	HLR 911-96
mykiss		DPX-MP062 (94.5% purity)		RV2
(rainbow trout)		U.S. EPA Subdivision E, 72-1;OECD 203; EEC Method C.1.		
Cyprinus carpio	Acute	96 hr, static renewal (unaerated)	$LC_{50} = 0.969 \text{ mg/L}$	17-4810
(carp)		DPX-MP062 (99.68% purity)	NOEC = 0.315 mg/L	
		U.S. EPA Subdivision E, 72-1; OECD 203		
Ictalurus	Acute	96 hr, flow-through (unaerated)	$LC_{50} = 0.29 \text{ mg/L}$	HLR 866-96
punctatus		DPX-MP062 (94.5% purity)		RV2
(catfish)		U.S. EPA Subdivision E, 72-1; OECD 203; EEC Method C.1.		
Cyprinodon	Acute	96 hr, flow-through (unaerated)	$LC_{50} = >0.374 \text{ mg/L}$	HLO 1997-
variegates		DPX-MP062 (94.5% purity)		00090 RV1
(sheepshead minnow)		U.S. EPA Subdivision E, 72-3		
Daphnia magna	Acute toxicity	48 hr, static	$EC_{50} = 0.60 \text{ mg/L}$	HLR 603-96
(water flea)		DPX-MP062 (94.5% purity)		RV2
		U.S. EPA Subdivision E, 72-2; OECD 202; EEC Method C.2.		
Daphnia magna	Chronic toxicity	21 days, static renewal (unaerated)	NOEC = 0.075 mg/L	HLR 1997-
(water flea)		DPX-MP062 (94.5% purity)	MATC = 0.119 mg/L	00912
		OECD 202; EPA-540/9-86-141; ASTM E729-88a	LOEC = 0.19 mg/L	
	Chronic toxicity:	90 days, flow-through	NOEC = 0.15 mg/L	HLR 598-96 RV1
mykiss	Fish early life stage toxicity test	DPX-MP062 (94.5% purity)	MATC = 0.20 mg/L	
(rainbow trout)		OECD 210; U.S. EPA Subdivision E, 72-1	LOEC = 0.25 mg/L	
Cyprinodon	Chronic toxicity:	35 days, flow-through	NOEC = 0.0169 mg/L	HLO 1997-
variegates	Fish early life	DPX-MP062 (94.5% purity)	MATC = 0.0265 mg/L	00091 RV1 VOL 1-4
(sheepshead minnow)	stage toxicity test	U.S. EPA Subdivision E, 72-4	LOEC = 0.0417 mg/	V OL 1-4
Chironomus	Toxicity-	28 days, flow-through	NOEC = 0.0262 mg/L	DuPont-4055
riparius	sediment dweller	[14C]DPX-MP062 (98.4% purity)		
(midge)		OECD 219		

Species	Test	Duration and conditions*	Result	Reference
Mysidopsis	Acute	96 hour, flow-through	NOEC = 0.0542 mg/L	
bahia		DPX-MP062 (94.5% purity)		00205 RV1
(mysid)		U.S. EPA Subdivision E, 72-3		
Mysidopsis	Chronic	28 days flow-through (unaerated)	NOEC = 0.0184 mg/L	HLO 1997- 00206 RV1
bahia		DPX-MP062 (94.5% purity)	MATC = 0.0274 mg/L	
(mysid)		U.S. EPA Subdivision E, 72-4(c)	LOEC = 0.0407 mg/	
Mollusc	Acute	96 hour, flow-through	$EC_{50} = 0.218 \text{ mg/L}$	HLO 1997-
		DPX-MP062 (94.5% purity)		00350
		U.S. EPA Subdivision E, 72-3(b)		
Lemna gibba G3		14 days	DPX-MP062 has no	AMR 3602-95
(duckweed)	reproduction	DPX-MP062 (94.5% purity)	inhibitory effect on the growth and	RV1
		U.S EPA Subdivision J, 122-2	reproduction of Lemna	
Skeletonema	Growth and	120 hours	Cell Density:	AMR 3771-96
costatum	reproduction	DPX-MP062-51A (94.5% purity)	$EC_{50} = 1215 \mu\text{g/L}$	RV2
(alga)		Directive 96/69/EEC Method C3; U.S. EPA Subdivision J, 122-2 and 123-2	NOEC = $<107 \mu g/L$ Area Under Growth	
			Curve: $EC_{50} = 819 \mu\text{g/L}$	
			NOEC = $<107 \mu g/L$	
			Growth Rate:	
			$EC_{50} = 1362 \mu g/L$ $NOEC = < 107 \mu g/$	
Navicula polliculosa	Growth and	120 hours	Cell Density:	AMR 3772-96 RV2
(alga)	reproduction	DPX-MP062-51A (94.5% purity) Directive 96/69/EEC Method C3; U.S.	EC ₅₀ = >1676 μg/L Area Under Growth Curve:	NV2
		EPA Subdivision J, 122-2 and 123-2	$EC_{50} = >1676 \mu g/L$ Growth Rate:	
			EC ₅₀ = >1676 μg/L	
Pseudokirchneri	Growth and reproduction	120 hours	Cell Density:	AMR 4273-96
ella subcapitata (formerly		DPX-MP062 (94.5% purity)	EC ₅₀ = >110 μg/L	
Selenastrum capricornutum)		Directive 96/69/EEC Method C3; U.S. EPA Subdivision J, 122-2 and 123-2	Area Under Growth Curve:	
(green alga)			EC ₅₀ = >110 μg/L Growth Rate	
			$EC_{50} = >110 \mu g/$	
Anabaena flos-	Growth and	120 hours	Cell Density:	AMR 3770-96
<i>aquae</i> (Blue/green	reproduction	DPX-MP062-51A (94.5% purity)	$EC_{50} = >1931 \ \mu g/L$	RV2
alga)		Directive 96/69/EEC Method C3; U.S. EPA Subdivision J, 122-2 and 123-2	Area Under Growth Curve:	
		2. 7. Gabarrision 6, 122-2 and 125-2	$EC_{50} = >1931 \mu g/L$	
			Growth Rate:	

Species	Test	Duration and conditions*	Result	Reference
Eisenia foetida andrei (Earthworm)	Acute toxicity	14 days DPX-MP062-51A (94.5% purity) OECD 207; Directive 87/302/EEC	LC ₅₀ = >1250 mg DPX-MP062/kg soil	AMR 3968-96
Apis mellifera (honey bee)	Acute oral and contact toxicity	72 hours DPX-MP062 (99.4% purity) OECD No. 213 and No. 214	$LD_{50} =$ Oral= 0.258 µg DPX-MP062/bee (0.194 µg DPX-KN128/bee) Contact= 0.093 µg DPX-MP062/bee (0.070 µg DPX-KN128/bee)	DuPont-3995 RV1
Soil micro- organisms		28 days DPX-MP062 (94.5% purity) Directive 91/414/EEC Annex II 8.5; SETAC- Europe Part 2:4	No effects >25% at Day 28 with 250g DPX-MP062/ha	AMR 4134-96
Colinus virginianus (Bobwhite quail)	Acute oral toxicity	21 days DPX-MP062 (94.5% purity) FIFRA Subdivision E, Section 71-1, Hazard Evaluation: Wildlife and Aquatic Organisms	LD ₅₀ = 98 mg/kg bw NOEL = 37.8 mg/kg bw	AMR 3940-96 RV2
Colinus virginianus (Bobwhite quail)	Dietary toxicity	5 days DPX-MP062 (94.5% purity) FIFRA Subdivision E, 71-2, Hazard Evaluation: Wildlife and Aquatic Organisms; OECD 205; ASTM Standard E857-87	LC ₅₀ = 808 ppm diet NOEC = 316 ppm diet	AMR 4094-96 RV1
Anas platyrhynchos (Mallard duck)	Dietary toxicity	5 days DPX-MP062 (94.5% purity) FIFRA Subdivision E, 71-2, Hazard Evaluation: Wildlife and Aquatic Organisms; OECD 205; ASTM Standard E857-87	$LC_{50} = 5620$ ppm diet NOEC = 562 ppm diet	AMR 4093-96 RV1
Colinus virginianus (Bobwhite quail)	Reproductive toxicity	21 weeks DPX-MP062 (94.5% purity) FIFRA Subdivision E, 71-4, Hazard Evaluation: Wildlife and Aquatic Organisms; OECD 206; ASTM Standard E1062-86	NOEC = Food intake = 144 ppm Ecologically relevant = 720 ppm (75.7 mg/kg bw/day)	AMR 4096-96 RV1
Anas platyrhynchos (Mallard duck)	Reproductive toxicity	21 weeks DPX-MP062 (94.5% purity) FIFRA Subdivision E, 71-4, Hazard Evaluation: Wildlife and Aquatic Organisms; OECD 206; ASTM Standard E1062-86	NOEC = 720 ppm (105.0 mg/kg bw/day)	AMR 4095-96 RV1

^{*)} For *indoxacarb 3S+R* (DPX-MP062), the purity is the sum of the R- and S-isomer expressed as a percentage of the test material. For *indoxacarb* (DPX-KN128), the purity is the S-isomer expressed as a percentage of the test material.

ANNEX 2. REFERENCES

1	United States Environmental Protection Agency (U.S. EPA). August 1996. Office of Prevention,
ļ !	
	Pesticides, and Toxic Substances (OPPTS)., Product Properties Test Guidelines, OPPTS
_	830.7950, Vapor Pressure, EPA 712-C-96-043.EPA, Washington, D.C.
2	United States Environmental Protection Agency (U.S. EPA). August 1996. Office of Prevention,
	Pesticides, and Toxic Substances (OPPTS). Product Properties Test Guidelines, OPPTS
	830.7200, Melting Point/Melting Range, EPA 712-C-95-033. EPA, Washington, D.C.
3	United States Environmental Protection Agency (U.S. EPA). August 1996. Office of Prevention,
	Pesticides, and Toxic Substances (OPPTS). Product Properties Test Guidelines, OPPTS
	830.7300, Density/Relative Density/Bulk Density, EPA 712-C-96-035. EPA, Washington, D.C.
4	United States Environmental Protection Agency (U.S. EPA). August 1996. Office of Prevention,
4	
	Pesticides, and Toxic Substances (OPPTS). Product Properties Test Guidelines, OPPTS
	830.7860, Water Solubility (Generator Column Method), EPA 712-C-96-042. EPA, Washington,
	D.C.
5	United States Environmental Protection Agency (U.S. EPA). August 1996. Office of Prevention,
	Pesticides, and Toxic Substances (OPPTS). Product Properties Test Guidelines, OPPTS
	830.7840, Water Solubility: Column Elution Method; Shake Flask Method, EPA 712-C-96-041.
	EPA, Washington, D.C.
6	United States Environmental Protection Agency (U.S. EPA). August 1996. Office of Prevention,
	Pesticides, and Toxic Substances (OPPTS). Product Properties Test Guidelines, OPPTS
	830.7550, Partition Coefficient (<i>n</i> -Octanol/Water), Shake Flask Method, EPA 712-C-96-038. EPA,
	Washington, D.C.
7	
7	United States Environmental Protection Agency (U.S. EPA); OPP Guideline 161-1, Hydrolysis,
	Pesticide Assessment Guidelines, Subdivision N: Chemistry: Environmental Fate, EPA Report
	712-C-98-057, August 1996.
8	United States Environmental Protection Agency (U.S. EPA); OPP Guideline 161-2, Photolysis,
	Pesticide Assessment Guideline, Subdivision N: Chemistry: Environmental Fate, EPA Report 712-
	C-96-060, August 1996.
9	United States Environmental Protection Agency (U.S. EPA). August 1996. Office of Prevention,
	Pesticides, and Toxic Substances (OPPTS). Product Properties Test Guidelines, OPPTS
	830.7550, Dissociation Constants in Water, EPA 712-C-96-036. EPA, Washington, D.C.
10	United States Environmental Protection Agency (U.S. EPA). August 1996. Office of Prevention,
10	Pesticides, and Toxic Substances (OPPTS). Product Properties Test Guidelines, OPPTS
4.4	830.7000, pH, EPA 712-C-96-030. EPA, Washington, D.C.
11	United States Environmental Protection Agency (U.S. EPA); OPP Guideline 81-1, Acute Oral
	Toxicity, Pesticide Assessment Guideline, Subdivision F: Hazard Evaluation; Human and Domestic
	Animals, EPA Report 540/09-82-025, 1982.
12	United States Environmental Protection Agency (U.S. EPA); OPP Guideline 81-2, Acute Dermal
	Toxicity, Pesticide Assessment Guideline, Subdivision F: Hazard Evaluation; Human and Domestic
	Animals, EPA Report 540/09-82-025, 1982.
13	United States Environmental Protection Agency (U.S. EPA); OPP Guideline 81-3, Acute Inhalation
	Toxicity-Rat, Pesticide Assessment Guideline, Subdivision F: Hazard Evaluation; Human and
	Domestic Animals, EPA Report 540/09-82-025, 1982.
14	United States Environmental Protection Agency (U.S. EPA); OPP Guideline 81-5, Primary Dermal
' '	Irritation, Pesticide Assessment Guideline, Subdivision F: Hazard Evaluation; Human and
	Domestic Animals, EPA Report 540/09-82-025, 1982.
15	United States Environmental Protection Agency (U.S. EPA); OPP Guideline 81-4, Acute Eye
15	United States Environmental Protection Agency (U.S. EPA), OPP Guideline 81-4, Acute Eye
	Irritation, Pesticide Assessment Guideline, Subdivision F: Hazard Evaluation; Human and
	Domestic Animals, EPA Report 540/09-82-025, 1984.
16	United States Environmental Protection Agency (U.S. EPA); OPP Guideline 81-6, Dermal
	Sensitization, Pesticide Assessment Guideline, Subdivision F: Hazard Evaluation; Human and
	Domestic Animals, EPA Report 540/09-82-025, 1982.
17	United States Environmental Protection Agency (U.S. EPA). August 1998. Office of Prevention,
	Pesticides, and Toxic Substances (OPPTS). Health Effects Test Guidelines, OPPTS 870.1100,
	Acute Oral Toxicity, EPA 712-C-96-190. EPA, Washington, D.C.
18	United States Environmental Protection Agency (U.S. EPA). August 1998. Office of Prevention,
'	
	Pesticides, and Toxic Substances (OPPTS). Health Effects Test Guidelines, OPPTS 870.1200,
40	Acute Dermal Toxicity, EPA 712-C-98-192. EPA, Washington, D.C.
19	United States Environmental Protection Agency (U.S. EPA). June 1996. Office of Prevention,
	Pesticides, and Toxic Substances (OPPTS). Health Effects Test Guidelines, OPPTS 870.2500,
<u></u>	Acute Dermal Irritation, EPA 712-C-96-196. EPA, Washington, D.C.
20	United States Environmental Protection Agency (U.S. EPA). August 1998. Office of Prevention,

	Doctioidos, and Toxio Substances (ODDTS), Health Effects Test Guidelines, ODDTS 970 9400
	Pesticides, and Toxic Substances (OPPTS). Health Effects Test Guidelines, OPPTS 870.2400, Acute Eye Irritation, EPA 712-C-98-195. EPA, Washington, D.C.
21	United States Environmental Protection Agency (U.S. EPA). June 1996. Office of Prevention, Pesticides, and Toxic Substances (OPPTS). Health Effects Test Guidelines, OPPTS 870.2600, Skin Sensitization, EPA 712-C-96-197. EPA, Washington, D.C.
22	United States Environmental Protection Agency (U.S. EPA); OPP Guideline 82-1, Part B, 90-Day Oral Rodent, Pesticide Assessment Guideline, Subdivision F: Hazard Evaluation; Human and Domestic Animals, EPA.
23	United States Environmental Protection Agency (U.S. EPA). August 1998. Office of Prevention, Pesticides, and Toxic Substances (OPPTS). Health Effects Test Guidelines, OPPTS 870.3200, 21/28-Day Dermal Toxicity, EPA 712-C-98-201. EPA, Washington, D.C.
24	United States Environmental Protection Agency (U.S. EPA). August 1998. Office of Prevention, Pesticides, and Toxic Substances (OPPTS). Health Effects Test Guidelines, OPPTS 870.3465, 90-Day Inhalation Toxicity, EPA 712-C-98-204. EPA, Washington, D.C.
25	United States Environmental Protection Agency (U.S. EPA); OPP Guideline 83-2, Carcinogenicity Test, Pesticide Assessment Guideline, Subdivision F: Hazard Evaluation; Human and Domestic Animals, EPA.
26	United States Environmental Protection Agency (U.S. EPA); OPP Guideline 83-5, Combined Chronic Toxicity/Carcinogencity Test, Pesticide Assessment Guideline, Subdivision F: Hazard Evaluation; Human and Domestic Animals, EPA.
27	United States Environmental Protection Agency (U.S. EPA); OPP Guideline 83-1, chronic Toxicity Test, Pesticide Assessment Guideline, Subdivision F: Hazard Evaluation; Human and Domestic Animals, EPA.
28	United States Environmental Protection Agency (U.S. EPA); OPP Guideline 81-8, Neurotoxicity Screening Battery, Pesticide Assessment Guideline, Subdivision F: Hazard Evaluation; Human and Domestic Animals, EPA.
29	United States Environmental Protection Agency (U.S. EPA). August 1998. Office of Prevention, Pesticides, and Toxic Substances (OPPTS). Health Effects Test Guidelines, OPPTS 870.6300, Developmental Neurotoxicity Study, EPA 712-C-98-239. EPA, Washington, D.C.
30	United States Environmental Protection Agency (U.S. EPA); OPP Guideline 82-7, Neurotoxicity Screening Battery, Pesticide Assessment Guideline, Subdivision F: Hazard Evaluation; Human and Domestic Animals, EPA.
31	United States Environmental Protection Agency (U.S. EPA); OPP Guideline 83-3, Teratogenicity Test Rodent, Pesticide Assessment Guideline, Subdivision F: Hazard Evaluation; Human and Domestic Animals, EPA.
32	United States Environmental Protection Agency (U.S. EPA). August 1998. Office of Prevention, Pesticides, and Toxic Substances (OPPTS). Health Effects Test Guidelines, OPPTS 870.3700, Prenatal Developmental Toxicity Study, EPA 712-C-98-207. EPA, Washington, D.C.
33	United States Environmental Protection Agency (U.S. EPA); OPP Guideline 83-4, Reproductive multi-generation Study, Pesticide Assessment Guideline, Subdivision F: Hazard Evaluation; Human and Domestic Animals, EPA.
34	United States Environmental Protection Agency (U.S. EPA); OPP Guideline 84-2, Bacterial Reverse Mutation, Pesticide Assessment Guideline, Subdivision F: Hazard Evaluation; Human and Domestic Animals, EPA.
35	United States Environmental Protection Agency (U.S. EPA); OPP Guideline 84-2, <i>in vitro</i> Mammalian Cell Gene Mutation, Pesticide Assessment Guideline, Subdivision F: Hazard Evaluation; Human and Domestic Animals, EPA.
36	United States Environmental Protection Agency (U.S. EPA); OPP Guideline 84-2, <i>in vitro</i> Unscheduled DNA Synthesis in Mammalian Cells in Culture, Pesticide Assessment Guideline, Subdivision F: Hazard Evaluation; Human and Domestic Animals, EPA.
37	United States Environmental Protection Agency (U.S. EPA); OPP Guideline 84-2, <i>in vitro</i> Mammalian Chromosomal Aberration Test, Pesticide Assessment Guideline, Subdivision F: Hazard Evaluation; Human and Domestic Animals, EPA.
38	United States Environmental Protection Agency (U.S. EPA); OPP Guideline 84-2, <i>in vivo</i> Micronucleus Test, Pesticide Assessment Guideline, Subdivision F: Hazard Evaluation; Human and Domestic Animals, EPA.